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Analyzing climate variations at multiple
timescales can guide Zika virus response
measures
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Abstract

Background: The emergence of Zika virus (ZIKV) in Latin America and the Caribbean in 2014–2016 occurred during
a period of severe drought and unusually high temperatures, conditions that have been associated with the 2015–2016
El Niño event, and/or climate change; however, no quantitative assessment has been made to date. Analysis of related
flaviviruses transmitted by the same vectors suggests that ZIKV dynamics are sensitive to climate seasonality and
longer-term variability and trends. A better understanding of the climate conditions conducive to the 2014–2016 epidemic
may permit the development of climate-informed short and long-term strategies for ZIKV prevention and control.

Results: Using a novel timescale-decomposition methodology, we demonstrate that the extreme climate anomalies
observed in most parts of South America during the current epidemic are not caused exclusively by El Niño or climate
change, but by a combination of climate signals acting at multiple timescales. In Brazil, the dry conditions present in
2013–2015 are primarily explained by year-to-year variability superimposed on decadal variability, but with little
contribution of long-term trends. In contrast, the warm temperatures of 2014–2015 resulted from the compound effect
of climate change, decadal and year-to-year climate variability.

Conclusions: ZIKV response strategies made in Brazil during the drought concurrent with the 2015-2016 El Niño event,
may require revision in light of the likely return of rainfall associated with the borderline La Niña event expected in
2016–2017. Temperatures are likely to remain warm given the importance of long term and decadal scale climate signals.
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Background
It has been postulated that the 2015–2016 El Niño-
Southern Oscillation (ENSO) event or long-term climate
change, contributed to the recent emergence of Zika
virus (ZIKV) in Latin America and the Caribbean (LAC)
[1]. While plausible, analysis of the climate–ZIKV inter-
action is constrained by the recent arrival of the virus in
LAC, meaning there is a lack of historical time series of
epidemiological data [2], and the diverse nature of prior
epidemics across the globe [3]. Evidence to date suggests
that ZIKV is principally transmitted by the container-

breeding mosquito Aedes aegypti [4]. Because of its
recent and rapid spread, Ae. albopictus, alongside other
Aedes spp., has been identified as a minor vector, but one
with significant transmission potential for the future [5]. Al-
though ZIKV transmission depends on several factors in-
cluding human behavior, it is well established that the
associated vectors are sensitive to variations in environmen-
tal temperature and rainfall. Weather-based early warning
systems for the related dengue virus have been suggested in
different regions of the world [6–8]. Temperature is a sig-
nificant driver for the development of juvenile mosquito
vectors and adult feeding/egg-laying cycles, along with the
length of extrinsic incubation period, and viral replication
of arboviruses [8–11]. Both excess rainfall and drought have
been implicated in creating breeding sites for Aedes
vectors of ZIKV, and associated epidemics of dengue
and chikungunya. Heavy rainfall may result in the develop-
ment of outdoor breeding sites in a wide range of artificial

* Correspondence: angel.g.munoz@noaa.gov
1Atmospheric and Oceanic Sciences/Geophysical Fluid Dynamics Laboratory,
Princeton University, Forrestal Campus. Forrestal Road 201, Princeton, NJ,
USA
2International Research Institute for Climate and Society, Earth Institute,
Columbia University, New York, NY, USA
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Muñoz et al. GigaScience  (2016) 5:41 
DOI 10.1186/s13742-016-0146-1

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/5/1/s13742-016-0146-1/2737422 by N

O
AA C

entral Library user on 09 M
arch 2020



containers [10, 12]; droughts may also encourage humans
to change the way they store water, resulting in increases in
domestic breeding sites for Aedes spp. [13].
The climate at any location varies from its historical

average on a number of time scales, including natural year-
to-year and decadal (10–30 year) variations, as well as long-
term trends; the latter compatible with anthropogenic
climate change signals [14]. The magnitude or persistence
of climate variations may enhance or decrease epidemic po-
tential in the region. To better understand how much of
the total variance in rainfall and temperature is explained
by different timescales, and how those variations connect
to recent conditions associated in space and time with the
emergence of ZIKV in LAC, we analyze how anomalies
over time can be approximately attributed to variations in
climate drivers at different timescales. This type of analysis
is referred to as ‘timescale decomposition’ [14, 15]. This
methodology filters the associated anomalies of a climate
time-series into three components: the inter-annual, dec-
adal, and long-term trend signals. The analysis shows how
important each timescale is for explaining the entire histor-
ical climate signal observed in any particular location.

As indicated, the absence of long time-series of ZIKV
transmission indices or cases prohibits a formal statistical
assessment of the link between climate and ZIKV, includ-
ing the epidemiological effect of the climate in 2015 on
the epidemic. However, our study is based on the premise
that climate is likely to be an important driver of seasonal,
inter-annual and longer-term variations in ZIKV transmis-
sion, especially given that 1) temperature affects the devel-
opment rates of related arboviruses and known vectors,
and 2) droughts or excess rainfall influence vector breed-
ing sites, either directly or via changes in human behavior.
Our analysis therefore focuses on the particular contribu-
tions of climate signals at multiple timescales to rainfall
and temperature in order to support the development of
climate-informed short- and long-term strategies for
ZIKV prevention and control [14].

Data description
Since no single data set included the whole period of inter-
est, two sources of climate data were chosen for our ana-
lysis. Timescale decomposition (Figs. 1 and 2) analysis was
undertaken using the most up-to-date long-term (1901–

Fig. 1 Timescale decomposition for annual precipitation (a–c) and air temperature (d–f), sketching the total explained variance for the long-term
trend (a, d), decadal (b, e) and inter-annual variability (c, f) signals. Grid points in white indicate places where the lack of data would degrade the
analysis, thus the corresponding signal has been removed by the screening process [15]. Analysis focuses in the region delimited by the black
box (see main text)
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2014) rainfall and temperature data from the University of
East Anglia’s Climate Research Unit, product version
3.23 (CRUv3.23, 0.5° resolution) [16]. Recent annual
temperature and rainfall anomalies (2013–2015, Fig. 3) were
computed using the Climate Prediction Center’s Monthly
Global Surface Air Temperature Data Set (0.5°) [17] and
Rainfall Unified Data Set (0.5°) [18], respectively. Years
1979–2000 were used to compute the normal for Fig. 3.
Time series, maps and data are freely available in the

International Research Institute for Climate and Society
(IRI)’s Timescale Decomposition Maproom [19] and the
Latin American Observatory’s Climate and Health Map-
room [20, 21] for any region in the world with long enough
quality-controlled records. For details, see [15].

Results and discussion
The 20th century decomposition for annual rainfall totals
(Fig. 1a–c) and annual mean temperature (Fig. 1d–f ) sig-
nals in LAC show sharp differences in the variability ex-
plained by each timescale. The black box overlaid onto
Fig. 1 shows the area in which the highest number of re-
ports associated with typical arbovirus vectors [22] and
Zika cases [3] have been made, thus this region was se-
lected for further analysis. On average, results for the se-
lected region indicate that the portion of variance in

rainfall associated with the climate change signal is nil
(Fig. 1a), whereas that for the inter-annual component is
about 60–90 % throughout the region (Fig. 1c). The decom-
position also reveals that all three timescale components
for surface air temperature are important (Fig. 1d–f).
The temperature long-term trend signal is particularly

important in the southeastern regions of Brazil (Fig. 1d).
The decadal signal is, in general, more important for
temperature than for rainfall in the region, the contribution
to precipitation being higher along the coast (20–30 %,
Fig. 1b). For surface air temperature, however, the highest
decadal component is found in the Amazon (~50 %,
Fig. 1e). Inter-annual variations for surface air temperature
show values over 30 % of the explained variance in most lo-
cations, with a local maximum in northeastern Brazil that
explains at least 60 % of the variability (Fig. 1f). The lowest
values of the explained variance at the inter-annual scale
tend to correspond with the highest values of the long-
term trend signal (see Fig. 1f and d).
Results are similar for the region of interest when par-

ticular seasons are considered [19, 21]: for rainfall, inter-
annual and decadal scales are the most important, while
for surface air temperature the three timescales share
similar importance, although locally one timescale may
exhibit greater importance than the others.

Fig. 2 Timescale decomposition for annual anomalies in the 1901–2014 period (black curves represent rainfall in the top panel, and temperature
in the bottom panel) averaged over the region indicated in Fig. 1 (black box). The anomalies correspond to the superposition of the long-term
trend (red), the decadal signal (green) and the inter-annual variability signal (blue). Contribution of each timescale to the total explained variance is
shown in parentheses
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Complementary analysis was performed for the average
climate over the boxed region of interest (Fig. 2). When
summed, the specific contributions explain the observed
anomalies for each particular year. These results show that
a positive superposition between the rainfall inter-annual
and decadal signals and all three temperature components
(climate change, decadal and inter-annual) is key to
understand the recent climate behavior in the region. This
collection of drivers was responsible for the particularly
warmer and drier than normal conditions present in the
region during the last few years. The unprecedented posi-
tive temperature anomalies that started in the 1990s are
consistent with the positive sign of the decadal component
for that period, combined with the contributions of the
long-term trend and inter-annual variability.
The spatial distribution patterns of temperature and

rainfall anomalies in LAC were fairly similar in 2014 and
2015 (Fig. 3), which were, at their respective termini, the
hottest years on record [23, 24]. The pattern correlations
between these years are 0.81 for temperature and 0.73
for rainfall, both statistically significant (P < 0.05) accord-
ing to a Student’s t-test. The year 2015 also marked the
start of one of the three most intense El Niño events on
record. In terms of temperature anomalies, 2013 was
normal in most parts of LAC, although the warming
pattern in the Amazon extending through the study re-
gion in the following years was already present. A similar
claim can be made for the annual rainfall anomalies in

the region under study (see black box in Fig. 3): the pro-
gressive drier than normal signal exhibited during 2014
and 2015 was already evolving in 2013. Similar anomaly
patterns were present in other countries too; for ex-
ample, warmer and drier than normal conditions were
observed in regions of Colombia, Venezuela, Ecuador,
and Puerto Rico, which have also been affected by the
ZIKV epidemic.

Conclusions
The warming observed in 2014–2015 is an outcome of
positive temperature anomalies at the year-to-year and
decadal timescales, superimposed on a long-term warm-
ing trend. This superposition of timescales may have
helped to set the climate scenario for local ZIKV trans-
mission via Ae. aegypti and other, less significant, vectors
[4]. These patterns were also observed during the first
half of 2016, although some rainfall anomalies have
changed as the year has progressed.
As of August 2016, seasonal forecasts of sea-surface tem-

peratures suggest that the probability of a La Niña event
later this year is about 55 % [25], which is significantly
higher than the corresponding climatological threshold
(~35 % for the same period). La Niña events typically lead
to wetter than average conditions over the northern part of
Brazil and northern South America [26]. Since precipita-
tion in this region is dominated by inter-annual variability,
climate drivers at longer timescales are not likely to offset

Fig. 3 Annual rainfall (upper row, in mm) and temperature anomalies (bottom row, in °C) in Latin America and the Carribbean for 2013–2015.
White over land indicates near-normal values. Black box corresponds to region with the highest number of reported Zika cases (see main text)
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that response to La Niña. In terms of temperature, the
tropics tend to be relatively cooler during La Niña events,
particularly relative to El Niño. However, given the com-
parable magnitude of decadal variability, which currently
appears to be in a warm phase, and the strength of the
long-term trend, warmer than average temperatures are
still the most likely outcome over the coming year, even
under ENSO-neutral conditions.
The characterization of year-to-year variability and

longer-term climatic trends is important for strategic ac-
tivities in preparation for ZIKV outbreak in LAC and
into the USA. For countries where variability and short
and long-term trends are in part predictable, climate in-
formation could support the planning of prevention and
control activities for different high risk areas, such as
training personnel in different aspects of the outbreak
early warning and response system [27].
For example, response strategies for ZIKV vector con-

trol in a warm and dry year, in which high levels of water
storage provide domestic breeding sites, may need revi-
sion in a wet year when outdoor breeding sites may be
more common. Current speculations about the climate
drivers that may affect ZIKV transmission (see for ex-
ample [1]) are based on plausible assumptions of the dy-
namics of the disease, but lack an in-depth understanding
of the climate. However, using climate knowledge to im-
prove health outcomes must be based on an understand-
ing of the climate system itself and its interactions at
multiple spatial and temporal scales. The timescale de-
composition approach [15] used here allows a robust as-
sessment of complex climate components to be made for
any time period, season and region [19, 21]. It provides a
basis for considering climate as a resource to decision-
maker efforts, not only for ZIKV, but for other vector-
borne diseases such as chikungunya and dengue.

Methods
In timescale decomposition, individual gridbox values are
first screened for filled data and for very dry seasons; then
the time-series are detrended in order to extract slow,
trend-like changes; finally, there is a filtering process, to
separate high and low frequency components in the
detrended data. Detrending involves regressing the local
time-series on multimodel global surface air temperature
data from the Twentieth Century Climate in Coupled
Models [28], and low-pass filtering. Decadal components
are obtained via low-pass filtering of the residual, using an
order-five Butterworth filter with half-power at a period of
10 years, while the inter-annual component is computed as
the difference between the residual from the detrending
step and the decadal signal [15]. By construction, the
method identifies the long-term trend with the anthropo-
genic climate change signal. For additional details, see the
IRI Timescale Decomposition Maproom [19].

For the maps in Fig. 1, data were processed gridbox by
gridbox, meaning that results in adjacent gridboxes are
not compared or combined. For the graph of the re-
gional time-series (Fig. 2), averaging over gridboxes was
performed prior to the decomposition. Total explained
variance for each component was computed for the
area-averaged time-series, and not as averages of the
spatial variance maps.
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